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Pattern formation near onset of a convecting fluid in an annulus
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Numerical simulations of the time-dependent Swift-Hohenberg equation are used to test the predictions of
Cross[Phys. Rev. A25, 1065(1982] that Rayleigh-Beard convection in the form of straight rolls or of an
array of dislocations may be observed in an annular domain, depending on the values of inner; radites
radiusr,, reduced Rayleigh number, and initial states. As, is decreased for a fixerd, and for different
choices ofe and of symmetric and random initial state, we find that there are indeed ranges of these parameters
for which the predictions of Cross are qualitatively correct. However, when the radius difference
becomes larger than a few roll diameters, a new pattern is observed consisting of stripe domains separated by
radially oriented grain boundaries. The relative stabilities of the various patterns are compared by evaluating
their Lypunov functional densities.
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[. INTRODUCTION approach the lateral boundaries at an approximately normal
angle[4]. For the most commonly used experimental geom-
A central question of nonequilibrium physics is patternetries of cylinders or boxes, these two constraints conflict
formation, why only certain stationary patterns in a nonequi_With one another since it is not possible for the rolls to be
librium, homogeneous, and continuous medium are observegverywhere normal to the sidewalls and to wiggle sinusoi-
for fixed parameters and boundaries. In this paper, we invedlally on a single length scale. This conflict can be partially
tigate a particu|ar aspect of this question' name|y, how pat[GSOlved by the formation of tOpOlOglcal defects that allow a
tern formation depends on the shape of the lateral boundoc@l change in wave vector. ,
aries. We do so by numerically integrating a two- An |n5|ghtful_ _analy5|s of this conflict between I_ateral
dimensional model of a three-dimensional convecting?©Undary conditions and local wave number was given by

fluid—the Swift-Hohenberg equatiofi,2}—in an annular Crosg 3], who observed that sufficiently close to the onset of

domain as a function of the inner and outer radii of the an-CONVvection, the pattern formation is governed by a Lyapunov

nulus and of the reduced Rayleigh numketwhich mea- functional £ that decreases monotonically along any given
sures how strongly the fluid is driven out of equilibrium _Orb't. and that is pggnded fr(_)_m below. Such a functloﬁal
Theory predicts that, as parameters are varied, two kinds dfiPlies that all initial conditions relax asymptotically to
patterns may be observed, a defect-free straight roll texturé®Me Stationary pattern and also provides a way to order
or an array of dislocation3]. The results we present below ifferent stationary patterns by their relative stabifig}. In
confirm some of these predictions and also predict a nedne double limit
state of radially oriented grain boundaries if the radial width
becomes sufficiently large. Future RayleighrBed experi- e—0" and Y — o, (1)
ments with a large Prandtl number fluid near onset in an
annular domain may be able to confirm these results. ) . )
Our calculations were motivated by experimefs-6] ~ Wheree is proportional to the reduced Rayleigh numbBr (
and simulation§2] which show that a rich variety of station- —Rc)/Rc and wherd" is the aspect ratiratio of the largest
ary patterns are observed just above the onset of Rayleigtateral dimension to the fluid depthCross showed that the
Benard convection in the form of stripeocally periodic ~ Lyapunov functionall could be decomposed into a sum of
convection roll$ disordered by topological defects such asthree terms, a surface term associated with the lateral bound-
dislocations, focus Singu|aritieS, and grain boundal(iSec- aries, a bulk term for the fluid far from the bOUndaries, and a
tion VIII of the review article by Cross and Hohenbdrigg ~ defect term which depends on the particular defects present.
discusses many experimental and theoretical results for thdy comparing these three terms with one another for various
Rayleigh-Bmard convection.The occurrence of defects can geometries in the limit Eq(1), Cross was able to explain
be qualitatively understood as a consequence of two compefather subtle phenomena such as why a pattern of straight
ing effects. First, near onset the local wave numbers of th@arallel rolls should be observed sufficiently close to onset in
convection rolls are constrained by the Busse stability bal2 large cylindrical or annular domain, as opposed to a pattern
loon [8—10] to lie in a narrow range about the critical wave Of concentric rolls with the same axisymmetry as the do-
numberq.. Second, in the absence of horizontal thermalmain. However, a careful comparison of Cross’s calculations
gradients, convection rolls are observed to evolve so as t#ith experiment[4] or with numerical simulation has not
been carried out and it remains unclear to what level of ac-
curacy the limits in Eq(1) need to be satisfied for Cross’s
*Also at Duke University’s Center for Nonlinear and Complex asymptotic analysis to hold. Experiments and numerical
Systems, Durham, NC 27708. Email address: hsg@phy.duke.edusimulations can also help to determine when higher-order
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terms in the amplitude expansion destroy the property of
variational dynamics, leading to a sustained oscillatory or
chaotic time dependence.

Of particular interest to us are Cross’s predictions about
possible patterns in an annular domain. For this geometry, a
fundamental frustration can arise if the rolls are normal to
both the inner and outer boundaries since it is then not pos-
sible for the local wave number to remain close to the critical
valueq, as a function of radius in the limit of a large radial
differencer,—r,. Cross predicted two possibilities that are
illustrated in Fig. 7 of his 1982 papdB]. One was that
sufficiently close to onset, the bulk term in the Lyapunov
functional would dominate, which would favor straight rolls
that extend throughout the annular cell. Wave number frus-
tration and defects are then avoided since the rolls are not
normal to the sidewalls. As a second possibility, Cross pre-
dicted that the surface term would be more important further
above onset in which case the rolls would orient normal to
the inner and outer boundaries. An average wave number
close to the critical valug, could then be arranged by in-
troducing an array of dislocatiorian example is shown be-
low in Fig. 1). To our knowledge, these predictions have not
been tested experimentally or numerically.

In this paper we test these predictions by numerical simu-
lations of the two-dimensional time-dependent Swift-
Hohenberg equatiofil] in an annular geometry as a simple
opportunity to explore how lateral boundaries affect pattern
formation. The Swift-Hohenberg equation is a widely stud-
ied rotationally invariant model that undergoes a supercriti-
cal bifurcation from a zero field state to a stripe state, corre-
sponding to the supercritical bifurcation of a conducting
motionless fluid to finite-amplitude three-dimensional con-

vection rolls. Sufficiently close to the onset of convection, LTI \

the long-wavelength slow-time scale dynamics of the Swift- k! ﬁ%j 000 %\ % (b)
Hohenberg equation obeys the same amplitude equation as heltis :.‘0;:[}&\: J=

the one obtained from the three-dimensional Boussinesq

equations that describe a convecting fluid quantitatiyély FIG. 1. Stationary numerical solutions of the Swift-Hohenberg

The linear stability boundaries of the Swift-Hohenberg equa£duation, Eq(2), with boundary conditions, Ed5), in an annular
tion are also similar to those of the Boussinesq equationdomain of outer radius, =80, inner radius, =60, aspect ratid’

near onset[2,11]. Numerical integrations of the Swift- —0-4, and bifurcation parameter=0.1. () A stationary pattern
Hohenberg equation in periodic, rectangular, and CyIindricaY_V'th four dislocations at timé= 177, (units of horizontal diffusion

: : : times7,,) that grew out of the initial statéy,=0.3 cos(100). (b) A
geometrie§2,12,13 have shown that its solutions are often stationary pattern with six dislocations at time % that grew out

in semiquantitativg agreement with experiments sufficientlyOf a straight-roll initial stategi,= 0.3 co§r cos(@)]. For both pat-
close to onset. It is then often useful to explore some ques; 0 o '

—_ —3 2\ _ — 6 H

tions of pattern formation first with Eq2) and later make e;p;'ﬁgggﬂggs\%rlgr:gg%fjl_oijinl&t':?s Spatiotem-
more careful studies by experiment or by more expenswg
simulations of the Boussinesq equations. Using a modified version of the code, we have also inte-

Using a time-integration code that we have developed tgrated a generalized Swift-Hohenbd@SH model[15,11]]
integrate the Swift-Hohenberg equation efficiently and accuio explore whether the wave number frustration caused by
rately in large annular domaif%4], we have calculated tran- the annular geometry might lead to a sustained dynamics.
sient solutions and their asymptotic stationary patterns fomlhe GSH model couples a second field, the vertical vorticity
different initial states and for different values of the param-potential {(t,x,y), to Eq.(2) in such a way that the overall
etersrq, r,, ande. As we describe below, our results con- dynamics is no longer variational and sustained time-
firm parts of Cross’s predictions but we also find that hisdependent solutions are possijtes6—19. Our admittedly
analysis was incomplete in that a new state occurs when therief study suggests that a sustained dynamics exceeding 30
radius difference,—r, becomes sufficiently large. This new or more horizontal diffusion timesr{,) seems to occur for
state consists of patches of stripes separated by radially ofi>15 while forI' <15, long-lived transients were observed
ented grain boundaries. that decayed toward a time-independent state. However, fur-
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ther studies will be needed to determine more carefullyFor boundary conditions, we require that the figldand its
whether any of the states are truly chadgtichat might ap- normal derivatived, ¢ vanish at each point of the inner
pear to be chaotic states in a spatially extended system mighbundaryr=r, and at each point of the outer boundary
instead be long-lived transients whose average decay timer,,
grows rapidly with the system siZ@€0]) and to characterize
the dependence of the dynamics on aspect ratio and other W(ri,0)=0 and (d,4)(r,,0)=0, i=12. (5
parameters.

The rest of this paper is organized as follows. In Sec. Il . . , "
we summarize details of the numerical method used to inteAIthough th_ese cc_)ndltlons are consistent with the Va_”'Sh'”g

f the amplitude fieldA=0 as derived to lowest order in an

grate the time-dependent Swift-Hohenberg equation in an arf

nular geometry and to estimate the average Lyapunov fund"—‘mpl'tUde expansion "?.[3]’ they do not .correspond to the
tional (£). In Sec. Il we discuss the results of our correct boundary conditions of the amplituddurther from

simulations and compare them to the asymptotic analysis ofgszt' (I:to|r']s tehne.gnﬁerﬁgﬁgrﬁ:ﬁ;g Pc(;r?s(lg?]:j't'chSncot?ngn?ngﬂ
Cross and to the Busse linear stability balloon for the Swift- S venient p gl thons u

Hohenberg equatiofiL1]. Finally, in Sec. IV we summarize ous rl;lljmenlcatl_ caIcuIatmr’{Q,lG] hav(;a Sht?]wr to yield r(?[a— i
our main results. Further details are available in the under20"@P'€ Solutions when compared wi arge-aspect-ratio

. . : : onvection experiments near onset.
g;asdel;\ii]physms thesis of B. Sensoy, on which this paper E The numerical integration of Eq2) with boundary con-

ditions Eq.(5) produces a discrete numerical solutigp, at

successive equally spaced timgs-iAt that approximates

the unknown analytical solutiom/(t,r,6) on mesh points
In this section we discuss some details of how the Swift{r,6y) defined by

Hohenberg equation was integrated numerically in a large

II. METHODS

annular domain. The two-dimensional time-dependent Swift- ri=ri+jAr, 0sjs<N, (6)
Hohenberg equatiofi,2,7]
dp=[e—(V?+1)2]y— ¢°, 2 6,=kAH, O<k=N,. (7

determines the time evolution of a real scalar fig¢d,r, 0) Here Ar=(r,—r,)/N, andA§=2m/(N,+1) are the radial

in & two-dimensional spatial domain. Hefg=d/Jt denotes 5y angular resolutions, and the discrete solution converges

: : : H : 2_ 42 2__ 2 . . . .
the partial der;v_atlve with respect to im&"=di+dy=dr o the unknown analytical solution at the mesh points in the
+r1719, 417255 is the two-dimensional Laplacian operator, |imit of vanishing space-time resolution:

and the parameter is the bifurcation parameter, such that
the zero statey=0 becomes linearly unstable at a critical - L At AT Af—
value e.(I')=0. (As shown in Fig. 3 of Ref[2], for rolls Vi 1y, 0 as ALATLA6—0. ®

parallel to a wall, this critical value for the boundary condi- . ) .
tions Eq.(5) goes to zero as ()2 in the limit ' —x, soe, We discretized Eqg2) and(5) on the interior and boundary

is tiny for ['>10) The relation of Eq(2) to the amplitude Mesh points by approximating all spatial derivatives with
equation of the Boussinesq equations shé@isthat, near S€cond-order-accurate finite differences in the quantify
onset(i.e., in the limite—¢.'), the fieldy is proportional to &S described by Bystad in Ref[21]. For example, to ap-
the temperature deviatiom (t,X,y,Zg) — Tynea(Zo) Of the proximate t'he blharmonlq operat®f* to second-or_der_accu—
temperature field from its linear conducting profil& e, racy at a given Iat_tlce p<_)|ntr(,0k), a linear comb|nat|o_n of
evaluated on the horizontal midplare=z, of a three- 13 lattice values involving up to second-nearest neighbors
dimensional convection cell. Positive and negative values O\fva;.used. licit ti - thod f Id

s can therefore be interpreted as warrfrésing) and cooler ince an explicit time-stepping method for K@) wou

(descendingregions, respectively, of a convecting fluid. impose a severe stability qonstralnt of the fordit
We solve Eq(2) in polar coordinatesr( #) on the annular <C ma>{Ar_4,(ArA0)4] where C.'S some constarﬁZZ], we
domain chose to integrate Eq(2) with a simple-to-implement
operator-splitting method that integrates the nonlinear term
ri<r<r,, 0=<6<2m, (3)  explicitly and then the linear terms in E) implicitly. The
absence of spatial derivatives in the cubic nonlinear term
where the inner radius, and outer radius, are prescribed then implies that the largest time step allowed by the algo-
parameters. Since the scaling of parameters that lead to Erithm is no longer bounded by some power of the spatial
(2) normalizes the critical wave number to have the valueresolution, although it remains restricted by the overall sta-
g.=1, the effective fluid depth for the Swift-Hohenberg bility of the time-splitting algorithm and by accuracy. By
equation isd=(1/2)(2w/q.)=m and the aspect ratib of = making runs with different temporal resolutions for a fixed
the annular cell is fine spatial resolution, we found that a time step Mf
=0.5 provided a reasonable balance between accuracy and
r— Fo=rg 4) efficiency and we used this value for most of the integrations
T described in Sec. lll. section. The code was sufficiently fast

046204-3



BERK SENSOY AND HENRY GREENSIDE PHYSICAL REVIEW B4 046204

on a workstation using a 667-MHz Alpha processor that wek, , andk, are specified wave numberg,is some specified
could integrate tens of horizontal thermal diffusion timesphase, and the are uniformly distributed random numbers
(many multiples of"?) for our largestl’ domains in just a in the interval[ —1,1]. Although the second step E(L0) of
few days and so find approximately time-independenthe operating-splitting method automatically makes the solu-
asymptotic patterns to good accuracy. tion ¢ (t+ At) satisfy the discrete boundary conditions Eqg.
The first step of our algorithm integrates the nonlinear(5), we found that convergence to a smooth solution was
pieceN[ ¢]=— ¢ explicitly, using a second-order-accurate enhanced if we forced the initial states Etjl) to satisfy the
Adams-Bashforth method, boundary conditions by setting the fiejg) to zero within a
A distanceAr = 7 of the inner and outer radii.
. t The code then generated spatiotemporal figlgs on the
r=dit 7(3'\'[%]_ NLgi-1D)- ©) polarjk mesh at successive timgs=iAt. We visuﬂlsized the
fields with contour plots at positive and negative contours of
This advances the known field valugsat timet; (we tem-  magnitude+ (1/3)max,/¢;.|. We also plotted three scalar
porarily suppress the spatial indicgsto simplify the nota- time series that proved useful when determining whether
tion) to intermediate field values that we denoteddy. The  some state had become stationary. One time series was the
field values at timet; ,; are then obtained by solving the local field value at the midpoint of the annulus at angle
linear pieces in Eq(2) implicitly using a backward-Euler =0,
method with initial datay*, leading to the equation
ri+rs

t,2

0. (12

1 1 si()=y
VA4+2V2i+ 1+ A€ VT (10)
The second series was a global quantity, the spatially aver-
with the boundary conditions E¢5) imposed ony; ;. This ~ aged mean-square fie{d?)(t)
constant-coefficient generalized linear biharmonic problem 1 ,
can be solved efficiently with a second-order-accurate fast- _ 1 ” 2
direct method invented by Bjstad[23,24,21 which has a S2(0)= Afrl drfo dorlytr. o)1, (13
nearly optimal computational complexity of
O(N;N4log(Ny)). We used the public Fortran77 version of whereA=7(r3—r?) is the area of the annular domain. Near
the annular Bfestad solver available through netfig5]. onset, one can show that E@.3) is linearly related to the

The input data for the computer code are then the paranglobal vertical heat transpofNusselt numberacross the
eterse, ry, ry, Ny, Ny, At, the total integration tim&, and  fluid layer and so a plot af,(t) indicates how heat transport
some initial discrete fieldy;, on the mesh Eq6) that sat-  depends on the spatiotemporal dynamics. As a third time
isfies the discrete form of the boundary conditions E5).  series, we recorded the instantaneous value of the spatially
Previous studie$2] have shown that a reasonable spatialaveraged Lyapunov functiondL][ 1)
resolution requires at least six mesh points per half(ch#-
tance ofw) or Ar<7/6~0.52. For fixed ; andr,, we there- 1
fore chose the spatial resolutioNs andN, to provide or to ss(t)=(L[¥ D) (1) = K‘C[ dr (14
exceed this resolution in the radial and azimuthal directions.
(Although the resolution is uniform in the and 6 coordi-  where[3]
nates, in an annular cell geometry the figlés approximated

i i i i r 2w
more accurately near the inner radius since the density of E[l//]zf 2drfo dor
f1

_ g2y Sp 2 2
angular mesh points is higher therdany of our runs were eyt 2 PV DY),

tested at higher spatial and temporal resoluti@ssially by a (15)
factor of 2 or 4 and our results were verified not to change
with the higher resolution. Because the mesh is uniform with respect to thand 6

We used four different kinds of initial conditions variables, the integrals in Eq§l3) and (14) could be ap-
Po(r,0)=y(t=0r,0) to explore the dependence of the final proximated with a simple two-dimensional version of the

pattern on the initial state, rectangle rule for approximating one-dimensional integrals
[26]. The integrands were first approximated at the mesh
bor=acogkyb), Po=asink.r+¢), points Eq.(6) using second-order-accurate finite-difference
(11)  approximations for the spatial derivatives, and then the mesh
Yoz=asin(k,r cosd+ ¢), os=an. values were accumulated over all the mesh points. For many

initial conditions, we verified that the time seriggt) in Eq.
These describe, respectively, radially oriented rollg, {), (14) decreased monotonically with time provided that the
azimuthally orientedconcentri¢ rolls (i), straight rolls  space-time resolution was sufficiently fine, as should be the
(02, and random noise 4. (We also occasionally case for the analytical functional associated with &y.and
added small-amplitude noise to the roll initial conditions towith boundary conditions Ed5).
break possible symmetrigS.he parametea denotes the ini- After observing many patterns and their time series, we
tial amplitude(often chosen to be 0\fk), the parameteris,, chose empirically to define a pattern to be stationary if each
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of the two global time series Eq$13) and (14) had con- balloon for the Swift-Hohenberg equatidsee Fig. 31 in
verged to three significant digits. In fact, many of the pat-Ref. [2]). For locally parallel rolls that are normal to the
terns continued to evolve extremely slowly even after manyinner and outer walls of an annulus, one might expect a
horizontal diffusion timegsince the phase of the stripe am- pattern change when the local wave numgér) as a func-
plitude is diffusing in a large domainand we saw changes tion of radius crosses a linear stability boundary. For ex-
in the fourth significant digit of the quantitigs/?) and(£). ~ ample, if the local wave numbey near a fixed outer radius
However, when we integrated by a factor of ten longer forf2 iS @s small as possible consistent with the zigzag stable
certain representative patterrigearly 100T'2 in some 'egiong=1, then the local wave numbey(r,) enters the
cases we found no significant changes in the patterns exEckhaus unstable regiaye1+ \/e/12 when

cept for tiny translations or rotations of the overall roll struc-

ture. Although future calculations of stationary states may r< M2 _ (18)
benefit by using a more sophisticated algorithm, such as a 1+ el12

Newton method 26], applied to the time-independent form _ )

of Eqg. (2) or by using an annular version of a recently de- For e=0.1 and fixed ,= 80 (two parameters used in the runs
veloped fully implicit method13], the present results should below), the local wave numbeu(r;) becomes Eckhaus un-

provide a good starting point for comparing theory with ex-Stable whenr,<73.3. The corresponding aspect rafio
periment. ~2.1 is so small that the critical valug for the instability

of the zero-field state in a finite system exceeds0.1, i.e.,
as soon as a finite amplitude radial stripe pattern can form, it
is already Eckhaus unstable. A larger outer radiusvould

A. Overview therefore be needed to test the implications of @&).

In this section we summarize results of numerical integra- C1Ven the above constraints and our computational re-
tions in annular domains of the Swift-Hohenberg equationSCUrces, we chose to fix the outer radius at the vale
(2) for different choices of the bifurcation parameterof = 80 (@bout 25 half-rollsand study patterns with a decreas-
inner and outer radii, andr,, and of the initial condition. g Séquence of inner radii, from =60 tor, =10 in steps of
Our results confirm some predictions of Crd&§ but also  10- This corresponds to increasing the aspect rtioom
reveal new patterns that arise when the aspect ratiq4iq. ©6-4 t0 22.3 in steps oAI'=3.2. Equation(16) then implies
becomes sufficiently large. We also mention a few results fof?at we can make comparisons with Cross’s prediction, Eq.
the generalized Swift-Hohenberg equation which permitd17), for '<10. For the different choices of for fixedr»,
time-dependent nontransient states. we studied just two values of the bifurcation parameter,

The space of parametees ry, I, and initial data is too —0-1 and e=0.5. Earlier calculations of the Swift-
large to explore systematically so we let the predictions offohenberg equation in rectangular domaj@$ show that
Cross, as well as practical computational constraints guide Ugrriers to dislocation motion appear fetarger than about
in our choice of parameters. Our interest was first to explor®-5 SO these two values probe the “near onset” and “not so
the region defined by the limits E€L) for which the ampli- ~ €lose to onset” regimes.
tude equation should give an accurate description of the dy-
namics. For the annular domain E), Eq. (1) plus the
assumption of Cross that the annular aspect ratio is not too We begin our discussion of results with Fig. 1, which

Ill. RESULTS AND DISCUSSION

B. Stationary patterns

large imply the following constraints: shows two asymptotic stationary patterns near onget (
=0.1) obtained by integrating the Swift-Hohenberg equation
r2=h for more than 15 horizontal diffusion time&nits of 7
rves1, (ro—r >1, <1, 16 - , ; h
e (r=ro) Ve r (16 =T"?) in a small aspect ratib = 6.4 annular domain of outer

radiusr,=80. The initial conditions for panel@) and (b),
and we would like to satisfy these inequalities as best agespectively, were radially oriented rolls and straight rolls
possible. A second goal was to test the specific prediction Ifipo . and ¢ 5 in Eq. (11)]. Random initial conditions)yg 4
Cross[3] that a texture involving roll dislocations becomes |ead to the same kind of state so a pattern with dislocations
more stablg¢has a lower Lyapunov functional valugin Eq.  seems to be the most accessible basin of attraction. The

(14)] when the following inequality is first satisfied: asymptotic patterns in both cases consist of approximately
straight radially oriented rolls disrupted by four to six dislo-
(U= r2—rg 17) cations. The states ifa) and (b) have an identical average
r{ Lyapunov functional{ £)=3.40x 10 3 to three significant

digits and so are extremely close in “energy.” Initial condi-
For fixed radiir; andr,, Eq. (17) can be tested by making tions consisting of concentric rolls of high symmetry and a
runs for e above and below the ratidr,—ry)/r,]* for the little noise evolve into nonlinear stationary concentric rolls
four initial conditions Eq.(11), followed by comparing the which therefore constitute another basin of attraction, al-
average value of the Lyapunov function@) for the final  though a small one. The average value of the Lyapunov
stationary states. function (£)=0.0819 is higher than that for any of the pat-
Another constraint on the choice of parameters,, and  terns with dislocations so the concentric rolls are not pre-
r, for an annular domain comes from the Busse stabilityferred.
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FIG. 2. Stationary pattern at timé=25 7, starting from
straight roll initial conditionsy,=0.3 co$r cos@)] for the same
physical and numerical parameters as in Fig. 1 but with a larger
bifurcation parametee=0.5. Now (£)=0.0819 and(y?)=2.74
x10°°.

The valuee=0.1 in Fig. 1 substantially exceeds the value
[(ro,—r)/r;]*~0.012 predicted by the criterion Eq17)
with r,=80, r;=60 and so Fig. 1 is consistent with Cross’s
prediction that states with dislocations are preferred in that
they have a lower average Lyapunov functional. In fact, be-
cause the threshole~0.012 defined by Eq.17) is smaller
than the critical value:, for the onset of convection in such
a small aspect ratio cell, we could not find a pattern of
straight rolls for these same parameters to compare
Lyapunov functional values. For the larger valueesf 0.5,
which also satisfies Eq17), asymptotic patterns similar to
Fig. 1 are observed for initial conditions consisting of radi- FG. 3. T afi it inal lar domain f
ally oriented rolls or of random values. These patterns further - 9. TWo stationary patlerns in a 'arger annuiar domain for

from onset have an average Lyapunov functional and aveiga(rja’\rlne_telroszo.l,;l=4o, rg:80,| [~12.7, At=05, Nfb: 1'30’d
age square value dfC)= —0.0875 and(l/r2>=2.79>< 105 andN,= .(@) An approximately stationary pattern obtained at

. /. e . time t=197, starting from azimuthally oriented rolls, with values
But for an initial condition consisting of straight rolls at the (L)=—450x10° and ($?)=3.32<10"°. (b) An approximately

critical wave numbeqg=1, Fig. 2 shows that a dislocation- giationary pattern obtained at tine- 227, starting from straight
free pattern of approximately straight rolls can occur, al-yo|| initial conditions, with (£)=—4.45x10"2 and (y?)=3.38

though the stripes are only approximately straight where they 10-6. Both patterns show new defects consisting of radially ori-
are nearly parallel to the inner and outer boundaries. Thignted grain boundaries.

pattern has average values (@)=0.0819 and(4?)=2.74
% 10~ % and so is not preferred, again in accordance with the
criterion Eq.(17).

We now increase the aspect ratio frdiw=6.4 to 12.8 by
decreasing the inner radius from=60 to 40 for fixedr,
=80. Cross’s criterion Eq(17) for a texture with disloca-

they now bend at a substantial angle as they traverse the
outer to inner boundaries and a novel defect structure is ob-
served in the form of four or five radially oriented grain

tions to be preferred is now no longer expected to hold sinc@oundaries. These and other runs suggest that there are many
the annulus is many rolls wide and more complex texturedifferent stagongry st_ates p_053|ble fo_r_the specified parameter
can be expected. Figure 3 shows two examples of the al[y_all_Jes, all d|ffe_r|ng slightly in the position and number of the
proximately stationary patterns observed after long timegrain boundaries and possibly with the presence of a few
near onset §=0.1), starting from two different initial con- other defects. For example, in addition to four grain bound-
ditions, radially oriented rolls in (8 and straight rolls in aries, Fig. 8) shows two dislocations near the top and bot-
3(b). (Nearly identical patterns are observed when randontom of the inner boundary. According to the valuesCofFig.

initial conditions are usefiThe patterns have some similari- 3(a) is slightly preferred ovetb) but the lack of symmetry

ties to Fig. 1 in that the rolls are largely radially oriented butsuggests that neither yields the global minimumZof
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FIG. 5. Time series of the spatially averaged Lypuanov func-
tional (£)(t) [Eq. (14)] and mean-square valdg?)(t) [Eq. (13)]
starting from low-amplitude random initial conditions for the pa-
rameters of Fig. 4. The states are accurately stationaryt for
>19 7,, although it is rather interesting that the two time series do
not become stationary at the same time.

FIG. 4. Two stationary patterns in an annular domain for param-
eterse=0.1,r,=20, r,=80, I'~19.2, At=0.5, N,=258 andN,  strates the stationarity of such patterns by showing how the
=512. (a) An approximately stationary pattern obtained at time time series for the average Lyapunov functiodl) and
=22 7, starting from radially-oriented rollgb) An approximately  mean square ﬁe|d¢2> have converged to constant values. A
stationary pattern obtained at tinhe22 7, starting from straight e\ feature in Fig. @) is the appearance of a focus singu-
roll initial conditions. These and similar patterns obtained starting|arity for the first time(near the upper right side of the an-
from .random initial conditions all have ider_ltic_a_l average Lya_punovnulug_ Foci are a common feature in large cylindrical and
functionals and square values to three significant digits With, reyecangylar patterns near onset but evidently do not occur in
spectively,(£)=—4.86<10"" and(y~)=2.88<10™". annular domains until the aspect ratio is sufficiently large.

The stationary state Fig.(d) arises from straight-roll initial

For this samd’=12.8 cell, we carried out several runs conditions. Again there is a new feature with this larger as-
further from onset for the value=0.5. Straight roll initial  pect ratio in the form of grain boundaries next to the top and
states lead to a straight-roll stationary statet shown simi-  bottom outer boundary. Such grain boundaries are a common
lar to Fig. 2 with average values ¢L)=—0.176 and( ?) feature in large rectangular cells near or(éet example, see
=3.26x 10 °. Radially oriented and random initial condi- Fig. 9 of Ref.[2]) since rolls parallel to a sidewall are known
tions lead to patterns similar to Fig. 1 but with many moreto be unstable near onset to transverse rolls. The defected
defects(with values(L)=—0.176 and(¢%)=3.19x10°).  and straight roll patterns in Figs(a and 4b) have identical
Although the straight-roll state has the same averageverage Lyapunov functionals to three significant digits and
Lyapunov value(within our numerical accuragyit is not  so are equally stable. However, the straight roll state empiri-
accessible from typical initial conditions because of barriersally has a tiny basin of attraction and so is not accessible
to dislocation motion. from most initial states.

Figure 4 shows two stationary patterns near onset (  We conclude this section with Fig. 6, which shows two
=0.1) in a still largerI’=19.2 cell, while Fig. 5 demon- representative patterns in the=19.2 cell further from onset
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C. Dynamical states of the generalized Swift-Hohenberg
equation

Convection experiments close to onset of room-
temperature pressurized gasEsandtl number=1) have re-
vealed many different sustained time-dependent states of
which spiral defect chao$SDC) [27-30,18,3] has been
perhaps the most intriguing and thoroughly studied. Several
experimental features of SDC remain poorly understood,
e.g., why the state occurs in the first place, why its statistical
properties are insensitive to the aspect ratio of a (@bve
some minimum value of’), and why, to the contrary, the
critical value espc above which SDC is first observétbr a
fixed experimental cellis sensitive to the size and geometry
of the convection cell.

To determine whether SDC may be modified by an annu-
lar geometry and whether the wave number frustation of an
annular cell may itself be a source of sustained dynamics, we
have carried out a few exploratory calculations with a gen-
eralized Swift-Hohenberg modgl1,15 for which prior nu-
merical calculations in large square periodic domains have
produced spiral-defect-chaos like staf#8,29,33. We used
a model of the form

dp=[e—(V?+1)’]y—y¢°—g(U-V)y, (19

(= pV2+C?) V2 =2-[V(VZ) X V], (20)

U=V X({2), (21

with boundary conditions Ed5) for the field ¢+ and bound-
ary conditions

{(ry)=1¢(ry)=0, (7r§|r1:’9r§|r2:0v (22

for the vorticity potential fieldz(t,r, #). Because Eq(20) is
FIG. 6. Two stationary patterns in an annular domain for paramijinear in £ and involves again a constant-coefficient general-

eters e=0.5, r,;=20, r,=80, '~19.2, At=0.5, N,=258, and  jzed biharmonic operator, it was straightforward to modify
N,=512.(a) An approximately stationary pattern obtained at time the numerical algorithm of Sec. Il to integrate E(k9)—(21)
t=2 7, starting from straight rolls, with values=—0.110 and ;4 time.
(cp_2>=1.59>< 1075, An_ essentlally' perfect straight ro!l state is at- For all of our runs, we used the parameters of [R28)]
tained.(b) An approximately stationary pattern obtained at time
=8 7, starting from small-amplitude random initial conditions. Al-
thougrq there gre many defecth), the rolls are still oriented normal to e=05, »=1, g=50, c’=2, (23
the boundaries.

for which long-lived spiral-defect-chaos-like states were ob-
for e=0.5. Figure €a) grew out of straight roll initial con- served with periodic boundary conditions. We then fixed the
ditions and is a nearly perfect array of stripes; the instabilityouter radius to be,=80 and made several runs, each start-
near sidewalls towards transverse rolls does not occur at thisg with random initial conditions, for values of the inner
value ofe. Figure &b) shows a state that grew out of small radii from r;=60 to r;=10 decreasing in steps of 10.
amplitude random initial conditions. The highly disordered(This corresponds to aspect ratios between 6.4 and 22.3 in
lamellarlike pattern is similar to that observed for the Swift- steps of AT'~—3.2) For I'<13, we found that all states
Hohenberg equation in a large rectangular cellder0.5[2]  eventually became stationafysing the time series dfi?)
and is a consequence of larger barriers to the motion of disas the criteriopwith the statel’=12.7 taking the long time
locations. Such frozen disordered states have not been obf 437, to become time independent. FBe>13, the states
served experimentally and are likely an artifact of the Swift-were still dynamic up to our longest integration times of
Hohenberg equation, which is most physically relevant to thé0r,, although there was evidence both visually and from
Rayleigh-Baard convection in the limie—0 and for large time series that the states were coarsening and slowly evolv-
Prandtl number. ing to a state other than SDC.
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FIG. 7. Contour plots of the fielg(t,r, ) at timest=6, 12, 18,
and 24 7,, from an integration of the generalized-Swift-Hohenberg
equations, Eqs(19)—(21), with boundary conditions, Eq$5) and 054
(22), in an annular domain with,=80, r;=10, I'~22.3 and start- ’
ing from small-amplitude random initial conditions. The parameters 3
used weree=0.5, p=1, ¢?=2, g=50, N,=514, N,= 1024, and g
At=0.125. The state is time dependent out tar27the longest 3 04
time observed. €
s
. . . I
A representative example of the spatiotemporal dynamics i
of the GSH model Eqs19)—(21) in a large aspect ratid 05
=22.3 annular cell is shown in Fig. 7. The contour plots J b
show the spatial structure of the figldat timest=4, 12, 18, (b)
and 247, . At earlier timeqpanel(a)], there are a few spirals -1 ‘ ‘ - ‘ - ‘
0 5 10 15 20 25 30

but these eventually annihilate leaving a pattern that is more
slowly evolving, and with nearly half the pattern consisting
of foci. Two associated time series are shown in Fig. 8. They FIG. 8. Time series ofa), the mean square fields?) and of(b),
suggest that the dynamics is more complex for about tethe midpoint value Eq(12) for the time-dependent solution of the
horizontal diffusion times, then becomes slower and simplerGSH equations shown in Fig. 7. The dynamics is becoming slower
unlike the experimentally observed SDC state. The approxiand simpler over time.
mately periodic behavior of the midpoint field value in Fig.
8(b) for t>15 7, is likely caused by a slow translation of tendency of rolls to be normal to the sidewalls and the ten-
stripes past the observation point and does not correspond @gncy for the rolls to be straight in the bulk. We have inves-
a true time-periodic behavior. These time series suggest th&éigated Cross’s predictions for annular cells of varying aspect
the pattern may eventually become time independent. ratio 6.4<1"<22.3, near onset wite=0.1, and further from
Because the approximations relating the GSH model t®nset withe=0.5. We have used several kinds of initial con-
the Boussinesq equations are less well justified than thogditions including small-amplitude random fields as well as
that relate the Swift-Hohenberg model near onset, especialljigh-symmetry states of straight, radial, or concentric rolls to
concerning sustained chaotic states, it would be interesting texplore the possible basins of attraction.
confirm these calculations with integrations of the three- For an annular domain of rather small aspect rafio (
dimensional Boussinesq equations in an annular domain, and5), the predictions of Cross hold and stationary states with
to test the various calculations by experiment in large-aspectislocations are preferrdtiave a lower Lyapunov functional
ratio annular domains. density compared to straight rolls. As the aspect rafio
becomes larger, new patterns are observed that are charac-
terized by radially oriented grain boundaries. In nearly all
cases, for a given geometry and reduced Rayleigh nuber
The preceding sections may be summarized as followsnany different stationary states are possible, usually differ-
We have developed and applied a new computer code tmg only slightly in the value of the Lyapunov density or
study pattern formation near onset of the Swift-Hohenbergnean square fieldNusselt number The pattern that pro-
model in annular domains of varying aspect ratios. Asduces the global minimum of for given parameters values
pointed out by CrosE3], an annular geometry is interesting €, r,, andr, is not known but we conjecture that it is a
because there is an inherent conflict near onset between théhly symmetric arrangement of defects. Straight-roll pat-

time (horizontal diffusion times)

IV. CONCLUSIONS
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terns are observed only when starting from straight-roll ini-inesq equations, will be needed to determine the effect of an

tial conditions. Such patterns can have a lower Lyapunowannular domain on time-dependent states. We hope that the

density than the patterns with radially oriented rolls but theyabove results will stimulate experiments to test the specific

evidently have such a small basin of attraction that they arealculations reported here, especially in large Prandtl number

not observed starting from most initial conditions. fluids near onset for which the Swift-Hohenberg equation
We also explored the possibility of sustained time-should provide a reasonable description.

dependent states using a generalized Swift-Hohenberg

mode!, for parameters such that a ang-hyed_spwal defect ACKNOWLEDGMENTS

state is observed in a large aspect ratio periodic sq22ie
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