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Pattern formation near onset of a convecting fluid in an annulus

Berk Sensoy and Henry Greenside*
Department of Physics, Duke University, Durham, North Carolina 27708-0305

~Received 25 January 2001; published 20 September 2001!

Numerical simulations of the time-dependent Swift-Hohenberg equation are used to test the predictions of
Cross@Phys. Rev. A25, 1065~1982!# that Rayleigh-Be´nard convection in the form of straight rolls or of an
array of dislocations may be observed in an annular domain, depending on the values of inner radiusr 1, outer
radiusr 2, reduced Rayleigh numbere, and initial states. Asr 1 is decreased for a fixedr 2 and for different
choices ofe and of symmetric and random initial state, we find that there are indeed ranges of these parameters
for which the predictions of Cross are qualitatively correct. However, when the radius differencer 22r 1

becomes larger than a few roll diameters, a new pattern is observed consisting of stripe domains separated by
radially oriented grain boundaries. The relative stabilities of the various patterns are compared by evaluating
their Lypunov functional densities.

DOI: 10.1103/PhysRevE.64.046204 PACS number~s!: 89.75.Kd, 47.54.1r, 44.25.1f
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I. INTRODUCTION

A central question of nonequilibrium physics is patte
formation, why only certain stationary patterns in a noneq
librium, homogeneous, and continuous medium are obse
for fixed parameters and boundaries. In this paper, we in
tigate a particular aspect of this question, namely, how p
tern formation depends on the shape of the lateral bou
aries. We do so by numerically integrating a tw
dimensional model of a three-dimensional convect
fluid—the Swift-Hohenberg equation@1,2#—in an annular
domain as a function of the inner and outer radii of the
nulus and of the reduced Rayleigh numbere ~which mea-
sures how strongly the fluid is driven out of equilibrium!.
Theory predicts that, as parameters are varied, two kind
patterns may be observed, a defect-free straight roll tex
or an array of dislocations@3#. The results we present belo
confirm some of these predictions and also predict a n
state of radially oriented grain boundaries if the radial wid
becomes sufficiently large. Future Rayleigh-Be´nard experi-
ments with a large Prandtl number fluid near onset in
annular domain may be able to confirm these results.

Our calculations were motivated by experiments@4–6#
and simulations@2# which show that a rich variety of station
ary patterns are observed just above the onset of Rayle
Bénard convection in the form of stripes~locally periodic
convection rolls! disordered by topological defects such
dislocations, focus singularities, and grain boundaries.~Sec-
tion VIII of the review article by Cross and Hohenberg@7#
discusses many experimental and theoretical results for
Rayleigh-Bénard convection.! The occurrence of defects ca
be qualitatively understood as a consequence of two com
ing effects. First, near onset the local wave numbers of
convection rolls are constrained by the Busse stability b
loon @8–10# to lie in a narrow range about the critical wav
number qc . Second, in the absence of horizontal therm
gradients, convection rolls are observed to evolve so a
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approach the lateral boundaries at an approximately nor
angle@4#. For the most commonly used experimental geo
etries of cylinders or boxes, these two constraints confl
with one another since it is not possible for the rolls to
everywhere normal to the sidewalls and to wiggle sinus
dally on a single length scale. This conflict can be partia
resolved by the formation of topological defects that allow
local change in wave vector.

An insightful analysis of this conflict between later
boundary conditions and local wave number was given
Cross@3#, who observed that sufficiently close to the onset
convection, the pattern formation is governed by a Lyapun
functional L that decreases monotonically along any giv
orbit and that is bounded from below. Such a functionalL
implies that all initial conditions relax asymptotically t
some stationary pattern and also provides a way to o
different stationary patterns by their relative stability@3#. In
the double limit

e→01 and e1/2G→`, ~1!

wheree is proportional to the reduced Rayleigh numberR
2Rc)/Rc and whereG is the aspect ratio~ratio of the largest
lateral dimension to the fluid depth!, Cross showed that the
Lyapunov functionalL could be decomposed into a sum
three terms, a surface term associated with the lateral bo
aries, a bulk term for the fluid far from the boundaries, an
defect term which depends on the particular defects pres
By comparing these three terms with one another for vari
geometries in the limit Eq.~1!, Cross was able to explain
rather subtle phenomena such as why a pattern of stra
parallel rolls should be observed sufficiently close to onse
a large cylindrical or annular domain, as opposed to a pat
of concentric rolls with the same axisymmetry as the d
main. However, a careful comparison of Cross’s calculatio
with experiment@4# or with numerical simulation has no
been carried out and it remains unclear to what level of
curacy the limits in Eq.~1! need to be satisfied for Cross
asymptotic analysis to hold. Experiments and numeri
simulations can also help to determine when higher-oru
©2001 The American Physical Society04-1
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BERK SENSOY AND HENRY GREENSIDE PHYSICAL REVIEW E64 046204
terms in the amplitude expansion destroy the property
variational dynamics, leading to a sustained oscillatory
chaotic time dependence.

Of particular interest to us are Cross’s predictions ab
possible patterns in an annular domain. For this geometr
fundamental frustration can arise if the rolls are normal
both the inner and outer boundaries since it is then not p
sible for the local wave number to remain close to the criti
valueqc as a function of radius in the limit of a large radi
differencer 22r 1. Cross predicted two possibilities that a
illustrated in Fig. 7 of his 1982 paper@3#. One was that
sufficiently close to onset, the bulk term in the Lyapun
functional would dominate, which would favor straight rol
that extend throughout the annular cell. Wave number fr
tration and defects are then avoided since the rolls are
normal to the sidewalls. As a second possibility, Cross p
dicted that the surface term would be more important furt
above onset in which case the rolls would orient norma
the inner and outer boundaries. An average wave num
close to the critical valueqc could then be arranged by in
troducing an array of dislocations~an example is shown be
low in Fig. 1!. To our knowledge, these predictions have n
been tested experimentally or numerically.

In this paper we test these predictions by numerical sim
lations of the two-dimensional time-dependent Sw
Hohenberg equation@1# in an annular geometry as a simp
opportunity to explore how lateral boundaries affect patt
formation. The Swift-Hohenberg equation is a widely stu
ied rotationally invariant model that undergoes a superc
cal bifurcation from a zero field state to a stripe state, co
sponding to the supercritical bifurcation of a conducti
motionless fluid to finite-amplitude three-dimensional co
vection rolls. Sufficiently close to the onset of convectio
the long-wavelength slow-time scale dynamics of the Sw
Hohenberg equation obeys the same amplitude equatio
the one obtained from the three-dimensional Boussin
equations that describe a convecting fluid quantitatively@7#.
The linear stability boundaries of the Swift-Hohenberg eq
tion are also similar to those of the Boussinesq equati
near onset@2,11#. Numerical integrations of the Swift
Hohenberg equation in periodic, rectangular, and cylindr
geometries@2,12,13# have shown that its solutions are ofte
in semiquantitative agreement with experiments sufficien
close to onset. It is then often useful to explore some qu
tions of pattern formation first with Eq.~2! and later make
more careful studies by experiment or by more expens
simulations of the Boussinesq equations.

Using a time-integration code that we have developed
integrate the Swift-Hohenberg equation efficiently and ac
rately in large annular domains@14#, we have calculated tran
sient solutions and their asymptotic stationary patterns
different initial states and for different values of the para
etersr 1 , r 2 , ande. As we describe below, our results co
firm parts of Cross’s predictions but we also find that
analysis was incomplete in that a new state occurs when
radius differencer 22r 1 becomes sufficiently large. This ne
state consists of patches of stripes separated by radially
ented grain boundaries.
04620
f
r

t
a

o
s-
l

s-
ot
-
r

o
er

t

-

n
-
i-
-

-
,
-
as
q

-
s

l

y
s-

e

o
-

r
-

he

ri-

Using a modified version of the code, we have also in
grated a generalized Swift-Hohenberg~GSH! model @15,11#
to explore whether the wave number frustration caused
the annular geometry might lead to a sustained dynam
The GSH model couples a second field, the vertical vortic
potentialz(t,x,y), to Eq. ~2! in such a way that the overa
dynamics is no longer variational and sustained tim
dependent solutions are possible@16–19#. Our admittedly
brief study suggests that a sustained dynamics exceedin
or more horizontal diffusion times (th) seems to occur for
G.15 while for G,15, long-lived transients were observe
that decayed toward a time-independent state. However,

FIG. 1. Stationary numerical solutions of the Swift-Hohenbe
equation, Eq.~2!, with boundary conditions, Eq.~5!, in an annular
domain of outer radiusr 2580, inner radiusr 1560, aspect ratioG
.6.4, and bifurcation parametere50.1. ~a! A stationary pattern
with four dislocations at timet517th ~units of horizontal diffusion
timesth) that grew out of the initial statec050.3 cos(100u). ~b! A
stationary pattern with six dislocations at time 19th that grew out
of a straight-roll initial statec050.3 cos@r cos(u)#. For both pat-
terns,^L&@c#53.4031023 and^c2&54.4331026. The spatiotem-
poral resolutions wereNr566, Nu51024, andDt50.5.
4-2
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PATTERN FORMATION NEAR THE ONSET OF A . . . PHYSICAL REVIEW E64 046204
ther studies will be needed to determine more carefu
whether any of the states are truly chaotic~what might ap-
pear to be chaotic states in a spatially extended system m
instead be long-lived transients whose average decay
grows rapidly with the system size@20#! and to characterize
the dependence of the dynamics on aspect ratio and o
parameters.

The rest of this paper is organized as follows. In Sec
we summarize details of the numerical method used to i
grate the time-dependent Swift-Hohenberg equation in an
nular geometry and to estimate the average Lyapunov fu
tional ^L&. In Sec. III we discuss the results of ou
simulations and compare them to the asymptotic analysi
Cross and to the Busse linear stability balloon for the Sw
Hohenberg equation@11#. Finally, in Sec. IV we summarize
our main results. Further details are available in the und
graduate physics thesis of B. Sensoy, on which this pape
based@14#.

II. METHODS

In this section we discuss some details of how the Sw
Hohenberg equation was integrated numerically in a la
annular domain. The two-dimensional time-dependent Sw
Hohenberg equation@1,2,7#

] tc5@e2~¹211!2#c2c3, ~2!

determines the time evolution of a real scalar fieldc(t,r ,u)
in a two-dimensional spatial domain. Here] t5]/]t denotes
the partial derivative with respect to time,¹25]x

21]y
25] r

2

1r 21] r1r 22]u
2 is the two-dimensional Laplacian operato

and the parametere is the bifurcation parameter, such th
the zero statec50 becomes linearly unstable at a critic
value ec(G)>0. ~As shown in Fig. 3 of Ref.@2#, for rolls
parallel to a wall, this critical value for the boundary cond
tions Eq.~5! goes to zero as (2/G)2 in the limit G→`, soec
is tiny for G.10.! The relation of Eq.~2! to the amplitude
equation of the Boussinesq equations shows@3# that, near
onset~i.e., in the limite→ec

1), the fieldc is proportional to
the temperature deviationT(t,x,y,z0)2Tlinear(z0) of the
temperature fieldT from its linear conducting profileTlinear,
evaluated on the horizontal midplanez5z0 of a three-
dimensional convection cell. Positive and negative value
c can therefore be interpreted as warmer~rising! and cooler
~descending! regions, respectively, of a convecting fluid.

We solve Eq.~2! in polar coordinates (r ,u) on the annular
domain

r 1<r<r 2 , 0<u,2p, ~3!

where the inner radiusr 1 and outer radiusr 2 are prescribed
parameters. Since the scaling of parameters that lead to
~2! normalizes the critical wave number to have the va
qc51, the effective fluid depth for the Swift-Hohenbe
equation isd5(1/2)(2p/qc)5p and the aspect ratioG of
the annular cell is

G5
r 22r 1

p
. ~4!
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For boundary conditions, we require that the fieldc and its
normal derivative] rc vanish at each point of the inne
boundaryr 5r 1 and at each point of the outer boundaryr
5r 2,

c~r i ,u!50 and ~] rc!~r i ,u!50, i 51,2. ~5!

Although these conditions are consistent with the vanish
of the amplitude fieldA50 as derived to lowest order in a
amplitude expansion ine @3#, they do not correspond to th
correct boundary conditions of the amplitudeA further from
onset. It is then perhaps best to consider the conditions
~5! as convenient phenomenological conditions that num
ous numerical calculations@2,16# have shown to yield rea
sonable solutions when compared with large-aspect-r
convection experiments near onset.

The numerical integration of Eq.~2! with boundary con-
ditions Eq.~5! produces a discrete numerical solutionc i jk at
successive equally spaced timest i5 iDt that approximates
the unknown analytical solutionc(t,r ,u) on mesh points
(r j ,uk) defined by

r j5r 11 j Dr , 0< j <Nr , ~6!

uk5kDu, 0<k<Nu . ~7!

HereDr 5(r 22r 1)/Nr andDu52p/(Nu11) are the radial
and angular resolutions, and the discrete solution conve
to the unknown analytical solution at the mesh points in
limit of vanishing space-time resolution:

c i jk→c~ t i ,r j ,uk! as Dt,Dr ,Du→0. ~8!

We discretized Eqs.~2! and~5! on the interior and boundary
mesh points by approximating all spatial derivatives w
second-order-accurate finite differences in the quantityc i jk
as described by Bjo”rstad in Ref.@21#. For example, to ap-
proximate the biharmonic operator¹4 to second-order accu
racy at a given lattice point (r j ,uk), a linear combination of
13 lattice values involving up to second-nearest neighb
was used.

Since an explicit time-stepping method for Eq.~2! would
impose a severe stability constraint of the formDt
,C max@Dr4,(DrDu)4# where C is some constant@22#, we
chose to integrate Eq.~2! with a simple-to-implement
operator-splitting method that integrates the nonlinear te
explicitly and then the linear terms in Eq.~2! implicitly. The
absence of spatial derivatives in the cubic nonlinear te
then implies that the largest time step allowed by the al
rithm is no longer bounded by some power of the spa
resolution, although it remains restricted by the overall s
bility of the time-splitting algorithm and by accuracy. B
making runs with different temporal resolutions for a fixe
fine spatial resolution, we found that a time step ofDt
50.5 provided a reasonable balance between accuracy
efficiency and we used this value for most of the integratio
described in Sec. III. section. The code was sufficiently f
4-3
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BERK SENSOY AND HENRY GREENSIDE PHYSICAL REVIEW E64 046204
on a workstation using a 667-MHz Alpha processor that
could integrate tens of horizontal thermal diffusion tim
~many multiples ofG2) for our largestG domains in just a
few days and so find approximately time-independ
asymptotic patterns to good accuracy.

The first step of our algorithm integrates the nonline
pieceN@c#52c3 explicitly, using a second-order-accura
Adams-Bashforth method,

c* 5c i1
Dt

2
~3N@c i #2N@c i 21# !. ~9!

This advances the known field valuesc i at time t i ~we tem-
porarily suppress the spatial indicesi j to simplify the nota-
tion! to intermediate field values that we denote byc* . The
field values at timet i 11 are then obtained by solving th
linear pieces in Eq.~2! implicitly using a backward-Euler
method with initial datac* , leading to the equation

S ¹412¹2111
1

Dt
2e Dc i 115

1

Dt
c* , ~10!

with the boundary conditions Eq.~5! imposed onc i 11. This
constant-coefficient generalized linear biharmonic probl
can be solved efficiently with a second-order-accurate f
direct method invented by Bjo”rstad @23,24,21# which has a
nearly optimal computational complexity o
O„NrNulog(Nu)…. We used the public Fortran77 version
the annular Bjo”rstad solver available through netlib@25#.

The input data for the computer code are then the par
eterse, r 1 , r 2 , Nr , Nu , Dt, the total integration timeT, and
some initial discrete fieldc0 jk on the mesh Eq.~6! that sat-
isfies the discrete form of the boundary conditions Eq.~5!.
Previous studies@2# have shown that a reasonable spa
resolution requires at least six mesh points per half roll~dis-
tance ofp) or Dr<p/6'0.52. For fixedr 1 andr 2, we there-
fore chose the spatial resolutionsNr andNu to provide or to
exceed this resolution in the radial and azimuthal directio
~Although the resolution is uniform in ther and u coordi-
nates, in an annular cell geometry the fieldc is approximated
more accurately near the inner radius since the densit
angular mesh points is higher there.! Many of our runs were
tested at higher spatial and temporal resolutions~usually by a
factor of 2 or 4! and our results were verified not to chan
with the higher resolution.

We used four different kinds of initial condition
c0(r ,u)5c(t50,r ,u) to explore the dependence of the fin
pattern on the initial state,

c0,15a cos~kuu!, c0,25a sin~krr 1f!,
~11!

c0,35a sin~kxr cosu1f!, c0,45ah.

These describe, respectively, radially oriented rolls (c0,1),
azimuthally oriented~concentric! rolls (c0,2), straight rolls
(c0,3), and random noise (c0,4). ~We also occasionally
added small-amplitude noise to the roll initial conditions
break possible symmetries.! The parametera denotes the ini-
tial amplitude~often chosen to be 0.1Ae), the parametersku ,
04620
e

t

r

t-

-

l

s.

of

kr , andkx are specified wave numbers,f is some specified
phase, and theh are uniformly distributed random numbe
in the interval@21,1#. Although the second step Eq.~10! of
the operating-splitting method automatically makes the so
tion c(t1Dt) satisfy the discrete boundary conditions E
~5!, we found that convergence to a smooth solution w
enhanced if we forced the initial states Eq.~11! to satisfy the
boundary conditions by setting the fieldc0 to zero within a
distanceDr 5p of the inner and outer radii.

The code then generated spatiotemporal fieldsc i jk on the
polar jk mesh at successive timest i5 iDt. We visualized the
fields with contour plots at positive and negative contours
magnitude6(1/3)maxj,kucijku. We also plotted three scala
time series that proved useful when determining whet
some state had become stationary. One time series wa
local field value at the midpoint of the annulus at angleu
50,

s1~ t !5cS t,
r 11r 2

2
,0D . ~12!

The second series was a global quantity, the spatially a
aged mean-square field^c2&(t)

s2~ t !5
1

AEr 1

r 2
drE

0

2p

du r @c~ t,r ,u!#2, ~13!

whereA5p(r 2
22r 1

2) is the area of the annular domain. Ne
onset, one can show that Eq.~13! is linearly related to the
global vertical heat transport~Nusselt number! across the
fluid layer and so a plot ofs2(t) indicates how heat transpo
depends on the spatiotemporal dynamics. As a third t
series, we recorded the instantaneous value of the spat
averaged Lyapunov functional^L@c#&

s3~ t !5^L@c#&~ t !5
1

A
L@c#, ~14!

where@3#

L@c#5E
r 1

r 2
drE

0

2p

du r F2ec21
e

2
c41$~¹211!c%2G .

~15!

Because the mesh is uniform with respect to ther and u
variables, the integrals in Eqs.~13! and ~14! could be ap-
proximated with a simple two-dimensional version of t
rectangle rule for approximating one-dimensional integr
@26#. The integrands were first approximated at the me
points Eq.~6! using second-order-accurate finite-differen
approximations for the spatial derivatives, and then the m
values were accumulated over all the mesh points. For m
initial conditions, we verified that the time seriess3(t) in Eq.
~14! decreased monotonically with time provided that t
space-time resolution was sufficiently fine, as should be
case for the analytical functional associated with Eq.~2! and
with boundary conditions Eq.~5!.

After observing many patterns and their time series,
chose empirically to define a pattern to be stationary if e
4-4
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PATTERN FORMATION NEAR THE ONSET OF A . . . PHYSICAL REVIEW E64 046204
of the two global time series Eqs.~13! and ~14! had con-
verged to three significant digits. In fact, many of the p
terns continued to evolve extremely slowly even after ma
horizontal diffusion times~since the phase of the stripe am
plitude is diffusing in a large domain!, and we saw change
in the fourth significant digit of the quantities^c2& and^L&.
However, when we integrated by a factor of ten longer
certain representative patterns~nearly 100 G2 in some
cases!, we found no significant changes in the patterns
cept for tiny translations or rotations of the overall roll stru
ture. Although future calculations of stationary states m
benefit by using a more sophisticated algorithm, such a
Newton method@26#, applied to the time-independent form
of Eq. ~2! or by using an annular version of a recently d
veloped fully implicit method@13#, the present results shoul
provide a good starting point for comparing theory with e
periment.

III. RESULTS AND DISCUSSION

A. Overview

In this section we summarize results of numerical integ
tions in annular domains of the Swift-Hohenberg equat
~2! for different choices of the bifurcation parametere, of
inner and outer radiir 1 and r 2, and of the initial condition.
Our results confirm some predictions of Cross@3# but also
reveal new patterns that arise when the aspect ratio Eq~4!
becomes sufficiently large. We also mention a few results
the generalized Swift-Hohenberg equation which perm
time-dependent nontransient states.

The space of parameterse, r 1 , r 2, and initial data is too
large to explore systematically so we let the predictions
Cross, as well as practical computational constraints guid
in our choice of parameters. Our interest was first to expl
the region defined by the limits Eq.~1! for which the ampli-
tude equation should give an accurate description of the
namics. For the annular domain Eq.~3!, Eq. ~1! plus the
assumption of Cross that the annular aspect ratio is not
large imply the following constraints:

r 1Ae@1, ~r 22r 1!Ae@1,
r 22r 1

r 1
!1, ~16!

and we would like to satisfy these inequalities as best
possible. A second goal was to test the specific predictio
Cross@3# that a texture involving roll dislocations becom
more stable@has a lower Lyapunov functional valueL in Eq.
~14!# when the following inequality is first satisfied:

e1/4>
r 22r 1

r 1
. ~17!

For fixed radiir 1 and r 2, Eq. ~17! can be tested by makin
runs fore above and below the ratio@(r 22r 1)/r 1#4 for the
four initial conditions Eq.~11!, followed by comparing the
average value of the Lyapunov functional^L& for the final
stationary states.

Another constraint on the choice of parameterse, r 1, and
r 2 for an annular domain comes from the Busse stabi
04620
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balloon for the Swift-Hohenberg equation~see Fig. 31 in
Ref. @2#!. For locally parallel rolls that are normal to th
inner and outer walls of an annulus, one might expec
pattern change when the local wave numberq(r ) as a func-
tion of radius crosses a linear stability boundary. For e
ample, if the local wave numberq near a fixed outer radius
r 2 is as small as possible consistent with the zigzag sta
region q>1, then the local wave numberq(r 1) enters the
Eckhaus unstable regionq>11Ae/12 when

r 1<
r 2

11Ae/12
. ~18!

For e50.1 and fixedr 2580 ~two parameters used in the run
below!, the local wave numberq(r 1) becomes Eckhaus un
stable whenr 1<73.3. The corresponding aspect ratioG
'2.1 is so small that the critical valueec for the instability
of the zero-field state in a finite system exceedse50.1, i.e.,
as soon as a finite amplitude radial stripe pattern can form
is already Eckhaus unstable. A larger outer radiusr 2 would
therefore be needed to test the implications of Eq.~18!.

Given the above constraints and our computational
sources, we chose to fix the outer radius at the valuer 2
580 ~about 25 half-rolls! and study patterns with a decrea
ing sequence of inner radii, fromr 1560 tor 1510 in steps of
10. This corresponds to increasing the aspect ratioG from
6.4 to 22.3 in steps ofDG53.2. Equation~16! then implies
that we can make comparisons with Cross’s prediction,
~17!, for G<10. For the different choices ofr 1 for fixed r 2,
we studied just two values of the bifurcation parametere
50.1 and e50.5. Earlier calculations of the Swift
Hohenberg equation in rectangular domains@2# show that
barriers to dislocation motion appear fore larger than about
0.5 so these two values probe the ‘‘near onset’’ and ‘‘not
close to onset’’ regimes.

B. Stationary patterns

We begin our discussion of results with Fig. 1, whic
shows two asymptotic stationary patterns near onsete
50.1) obtained by integrating the Swift-Hohenberg equat
for more than 15 horizontal diffusion times~units of th
5G2) in a small aspect ratioG.6.4 annular domain of oute
radiusr 2580. The initial conditions for panels~a! and ~b!,
respectively, were radially oriented rolls and straight ro
@c0,1 and c0,3 in Eq. ~11!#. Random initial conditionsc0,4
lead to the same kind of state so a pattern with dislocati
seems to be the most accessible basin of attraction.
asymptotic patterns in both cases consist of approxima
straight radially oriented rolls disrupted by four to six disl
cations. The states in~a! and ~b! have an identical averag
Lyapunov functional^L&53.4031023 to three significant
digits and so are extremely close in ‘‘energy.’’ Initial cond
tions consisting of concentric rolls of high symmetry and
little noise evolve into nonlinear stationary concentric ro
which therefore constitute another basin of attraction,
though a small one. The average value of the Lyapun
function ^L&50.0819 is higher than that for any of the pa
terns with dislocations so the concentric rolls are not p
ferred.
4-5
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The valuee50.1 in Fig. 1 substantially exceeds the val
@(r 22r 1)/r 1#4'0.012 predicted by the criterion Eq.~17!
with r 2580, r 1560 and so Fig. 1 is consistent with Cross
prediction that states with dislocations are preferred in t
they have a lower average Lyapunov functional. In fact,
cause the thresholde'0.012 defined by Eq.~17! is smaller
than the critical valueec for the onset of convection in suc
a small aspect ratio cell, we could not find a pattern
straight rolls for these same parameters to comp
Lyapunov functional values. For the larger value ofe50.5,
which also satisfies Eq.~17!, asymptotic patterns similar to
Fig. 1 are observed for initial conditions consisting of ra
ally oriented rolls or of random values. These patterns furt
from onset have an average Lyapunov functional and a
age square value of^L&520.0875 and̂ c2&52.7931025.
But for an initial condition consisting of straight rolls at th
critical wave numberq51, Fig. 2 shows that a dislocation
free pattern of approximately straight rolls can occur,
though the stripes are only approximately straight where t
are nearly parallel to the inner and outer boundaries. T
pattern has average values of^L&50.0819 and̂ c2&52.74
31024 and so is not preferred, again in accordance with
criterion Eq.~17!.

We now increase the aspect ratio fromG56.4 to 12.8 by
decreasing the inner radius fromr 1560 to 40 for fixedr 2
580. Cross’s criterion Eq.~17! for a texture with disloca-
tions to be preferred is now no longer expected to hold si
the annulus is many rolls wide and more complex textu
can be expected. Figure 3 shows two examples of the
proximately stationary patterns observed after long tim
near onset (e50.1), starting from two different initial con
ditions, radially oriented rolls in 3~a! and straight rolls in
3~b!. ~Nearly identical patterns are observed when rand
initial conditions are used.! The patterns have some similar
ties to Fig. 1 in that the rolls are largely radially oriented b

FIG. 2. Stationary pattern at timet525 th starting from
straight roll initial conditionsc050.3 cos@r cos(u)# for the same
physical and numerical parameters as in Fig. 1 but with a la
bifurcation parametere50.5. Now ^L&50.0819 and^c2&52.74
31025.
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they now bend at a substantial angle as they traverse
outer to inner boundaries and a novel defect structure is
served in the form of four or five radially oriented gra
boundaries. These and other runs suggest that there are
different stationary states possible for the specified param
values, all differing slightly in the position and number of th
grain boundaries and possibly with the presence of a
other defects. For example, in addition to four grain boun
aries, Fig. 3~b! shows two dislocations near the top and b
tom of the inner boundary. According to the values ofL, Fig.
3~a! is slightly preferred over~b! but the lack of symmetry
suggests that neither yields the global minimum ofL.

r

FIG. 3. Two stationary patterns in a larger annular domain
parameterse50.1, r 1540, r 2580, G'12.7, Dt50.5, Nr5130,
andNu51024.~a! An approximately stationary pattern obtained
time t519th starting from azimuthally oriented rolls, with value
^L&524.503103 and ^c2&53.3231026. ~b! An approximately
stationary pattern obtained at timet522th starting from straight
roll initial conditions, with ^L&524.4531023 and ^c2&53.38
31026. Both patterns show new defects consisting of radially o
ented grain boundaries.
4-6
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PATTERN FORMATION NEAR THE ONSET OF A . . . PHYSICAL REVIEW E64 046204
For this sameG512.8 cell, we carried out several run
further from onset for the valuee50.5. Straight roll initial
states lead to a straight-roll stationary state~not shown! simi-
lar to Fig. 2 with average values of^L&520.176 and̂ c2&
53.2631025. Radially oriented and random initial cond
tions lead to patterns similar to Fig. 1 but with many mo
defects~with values^L&520.176 and̂ c2&53.1931025).
Although the straight-roll state has the same aver
Lyapunov value~within our numerical accuracy!, it is not
accessible from typical initial conditions because of barri
to dislocation motion.

Figure 4 shows two stationary patterns near onsete
50.1) in a still largerG519.2 cell, while Fig. 5 demon-

FIG. 4. Two stationary patterns in an annular domain for para
eterse50.1, r 1520, r 2580, G'19.2, Dt50.5, Nr5258 andNu

5512. ~a! An approximately stationary pattern obtained at timet
522 th starting from radially-oriented rolls.~b! An approximately
stationary pattern obtained at timet522 th starting from straight
roll initial conditions. These and similar patterns obtained start
from random initial conditions all have identical average Lyapun
functionals and square values to three significant digits with,
spectively,^L&524.8631023 and ^c2&52.8831026.
04620
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strates the stationarity of such patterns by showing how
time series for the average Lyapunov functional^L& and
mean square field̂c2& have converged to constant values.
new feature in Fig. 4~a! is the appearance of a focus sing
larity for the first time~near the upper right side of the an
nulus!. Foci are a common feature in large cylindrical a
rectangular patterns near onset but evidently do not occu
annular domains until the aspect ratio is sufficiently larg
The stationary state Fig. 4~b! arises from straight-roll initial
conditions. Again there is a new feature with this larger
pect ratio in the form of grain boundaries next to the top a
bottom outer boundary. Such grain boundaries are a com
feature in large rectangular cells near onset~for example, see
Fig. 9 of Ref.@2#! since rolls parallel to a sidewall are know
to be unstable near onset to transverse rolls. The defe
and straight roll patterns in Figs. 4~a! and 4~b! have identical
average Lyapunov functionals to three significant digits a
so are equally stable. However, the straight roll state emp
cally has a tiny basin of attraction and so is not access
from most initial states.

We conclude this section with Fig. 6, which shows tw
representative patterns in theG519.2 cell further from onset

-

g
v
-

FIG. 5. Time series of the spatially averaged Lypuanov fu
tional ^L&(t) @Eq. ~14!# and mean-square value^c2&(t) @Eq. ~13!#
starting from low-amplitude random initial conditions for the p
rameters of Fig. 4. The states are accurately stationary fot
.19 th , although it is rather interesting that the two time series
not become stationary at the same time.
4-7
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BERK SENSOY AND HENRY GREENSIDE PHYSICAL REVIEW E64 046204
for e50.5. Figure 6~a! grew out of straight roll initial con-
ditions and is a nearly perfect array of stripes; the instabi
near sidewalls towards transverse rolls does not occur at
value ofe. Figure 6~b! shows a state that grew out of sma
amplitude random initial conditions. The highly disorder
lamellarlike pattern is similar to that observed for the Sw
Hohenberg equation in a large rectangular cell fore50.5 @2#
and is a consequence of larger barriers to the motion of
locations. Such frozen disordered states have not been
served experimentally and are likely an artifact of the Sw
Hohenberg equation, which is most physically relevant to
Rayleigh-Bénard convection in the limite→0 and for large
Prandtl number.

FIG. 6. Two stationary patterns in an annular domain for para
eters e50.5, r 1520, r 2580, G'19.2, Dt50.5, Nr5258, and
Nu5512. ~a! An approximately stationary pattern obtained at tim
t52 th starting from straight rolls, with valuesL520.110 and
^c2&51.5931025. An essentially perfect straight roll state is a
tained.~b! An approximately stationary pattern obtained at timet
58 th starting from small-amplitude random initial conditions. A
though there are many defects, the rolls are still oriented norma
the boundaries.
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C. Dynamical states of the generalized Swift-Hohenberg
equation

Convection experiments close to onset of roo
temperature pressurized gases~Prandtl number'1) have re-
vealed many different sustained time-dependent state
which spiral defect chaos~SDC! @27–30,18,31# has been
perhaps the most intriguing and thoroughly studied. Sev
experimental features of SDC remain poorly understo
e.g., why the state occurs in the first place, why its statist
properties are insensitive to the aspect ratio of a cell~above
some minimum value ofG), and why, to the contrary, the
critical valueeSDC above which SDC is first observed~for a
fixed experimental cell! is sensitive to the size and geomet
of the convection cell.

To determine whether SDC may be modified by an an
lar geometry and whether the wave number frustation of
annular cell may itself be a source of sustained dynamics
have carried out a few exploratory calculations with a ge
eralized Swift-Hohenberg model@11,15# for which prior nu-
merical calculations in large square periodic domains h
produced spiral-defect-chaos like states@18,29,32#. We used
a model of the form

] tc5@e2~¹211!2#c2c32g~U•“ !c, ~19!

~2h¹21c2!¹2z5 ẑ•@“~¹2c!3“c#, ~20!

U5“3~z ẑ!, ~21!

with boundary conditions Eq.~5! for the fieldc and bound-
ary conditions

z~r 1!5z~r 2!50, ] rzur 1
5] rzur 2

50, ~22!

for the vorticity potential fieldz(t,r ,u). Because Eq.~20! is
linear inz and involves again a constant-coefficient gener
ized biharmonic operator, it was straightforward to mod
the numerical algorithm of Sec. II to integrate Eqs.~19!–~21!
in time.

For all of our runs, we used the parameters of Ref.@29#

e50.5, h51, g550, c252, ~23!

for which long-lived spiral-defect-chaos-like states were o
served with periodic boundary conditions. We then fixed
outer radius to ber 2580 and made several runs, each sta
ing with random initial conditions, for values of the inne
radii from r 1560 to r 1510 decreasing in steps of210.
~This corresponds to aspect ratios between 6.4 and 22.
steps ofDG'23.2.! For G,13, we found that all states
eventually became stationary~using the time series of̂c2&
as the criterion! with the stateG512.7 taking the long time
of 43th to become time independent. ForG.13, the states
were still dynamic up to our longest integration times
50th although there was evidence both visually and fro
time series that the states were coarsening and slowly ev
ing to a state other than SDC.

-

to
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PATTERN FORMATION NEAR THE ONSET OF A . . . PHYSICAL REVIEW E64 046204
A representative example of the spatiotemporal dynam
of the GSH model Eqs.~19!–~21! in a large aspect ratioG
522.3 annular cell is shown in Fig. 7. The contour plo
show the spatial structure of the fieldc at timest54, 12, 18,
and 24th . At earlier times@panel~a!#, there are a few spirals
but these eventually annihilate leaving a pattern that is m
slowly evolving, and with nearly half the pattern consisti
of foci. Two associated time series are shown in Fig. 8. Th
suggest that the dynamics is more complex for about
horizontal diffusion times, then becomes slower and simp
unlike the experimentally observed SDC state. The appr
mately periodic behavior of the midpoint field value in Fi
8~b! for t.15 th is likely caused by a slow translation o
stripes past the observation point and does not correspon
a true time-periodic behavior. These time series suggest
the pattern may eventually become time independent.

Because the approximations relating the GSH mode
the Boussinesq equations are less well justified than th
that relate the Swift-Hohenberg model near onset, espec
concerning sustained chaotic states, it would be interestin
confirm these calculations with integrations of the thre
dimensional Boussinesq equations in an annular domain,
to test the various calculations by experiment in large-asp
ratio annular domains.

IV. CONCLUSIONS

The preceding sections may be summarized as follo
We have developed and applied a new computer cod
study pattern formation near onset of the Swift-Hohenb
model in annular domains of varying aspect ratios.
pointed out by Cross@3#, an annular geometry is interestin
because there is an inherent conflict near onset betwee

FIG. 7. Contour plots of the fieldc(t,r ,u) at timest56, 12, 18,
and 24 th, from an integration of the generalized-Swift-Hohenbe
equations, Eqs.~19!–~21!, with boundary conditions, Eqs.~5! and
~22!, in an annular domain withr 2580, r 1510, G'22.3 and start-
ing from small-amplitude random initial conditions. The paramet
used weree50.5, h51, c252, g550, Nr5514, Nu51024, and
Dt50.125. The state is time dependent out to 27th , the longest
time observed.
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tendency of rolls to be normal to the sidewalls and the t
dency for the rolls to be straight in the bulk. We have inve
tigated Cross’s predictions for annular cells of varying asp
ratio 6.4<G<22.3, near onset withe50.1, and further from
onset withe50.5. We have used several kinds of initial co
ditions including small-amplitude random fields as well
high-symmetry states of straight, radial, or concentric rolls
explore the possible basins of attraction.

For an annular domain of rather small aspect ratioG
,5), the predictions of Cross hold and stationary states w
dislocations are preferred~have a lower Lyapunov functiona
density! compared to straight rolls. As the aspect ratioG
becomes larger, new patterns are observed that are ch
terized by radially oriented grain boundaries. In nearly
cases, for a given geometry and reduced Rayleigh numbee,
many different stationary states are possible, usually dif
ing only slightly in the value of the Lyapunov density o
mean square field~Nusselt number!. The pattern that pro-
duces the global minimum ofL for given parameters value
e, r 1, and r 2 is not known but we conjecture that it is
highly symmetric arrangement of defects. Straight-roll p

s

FIG. 8. Time series of~a!, the mean square field̂c2& and of~b!,
the midpoint value Eq.~12! for the time-dependent solution of th
GSH equations shown in Fig. 7. The dynamics is becoming slo
and simpler over time.
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BERK SENSOY AND HENRY GREENSIDE PHYSICAL REVIEW E64 046204
terns are observed only when starting from straight-roll i
tial conditions. Such patterns can have a lower Lyapun
density than the patterns with radially oriented rolls but th
evidently have such a small basin of attraction that they
not observed starting from most initial conditions.

We also explored the possibility of sustained tim
dependent states using a generalized Swift-Hohenb
model, for parameters such that a long-lived spiral def
state is observed in a large aspect ratio periodic square@29#.
However our admittedly incomplete study revealed o
long-lived complex spatiotemporal transients. Further ana
sis, preferably by experiment or by integrations of the Bou
e
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it
te

y

p:/
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inesq equations, will be needed to determine the effect o
annular domain on time-dependent states. We hope tha
above results will stimulate experiments to test the spec
calculations reported here, especially in large Prandtl num
fluids near onset for which the Swift-Hohenberg equat
should provide a reasonable description.
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